
Defect Prediction and Analysis Using
ODC Approach in a Web Application

PRANAYANATH REDDY ANANTULA*,RAGHURAM CHAMARTHI (TEJORAGHURAM) **

* IT-Department, CVR College of Engineering, Ibrahimpatnam, Hyderabad, A.P, India

**Software Engineer, TATA Consultancy Services, Hyderabad, A.P, India

Abstract-In software project management, there are five basic
factors to predict and control, those are size, process, effort,
environment and quality. Most of the software engineers focus
on these factors to improve the software quality. In practice
quality management implies finding defects and rectifying them.
Software defects are not well enough understood to provide a
clear methodology for avoiding or recovering from them. Most
of the research related to software quality focuses on modeling
the residual defects in the software to estimate software
reliability. Software project management need to be improved in
order to predict other possible information about software
quality such as in-process defects, their type, classify the defects
into a group and so on. Currently software engineers still don’t
have a complete defect prediction technique for any kind of
software product. This paper provides a new approach for
predicting the defects and classification of defects based on
project characteristics in the early life cycle phases. Using
Orthogonal Defect Classification (ODC) ([4], [5]) approach we
will see how the current proposed methods are used to improve
and realize the quality in development and test environments in
a web application.

Keywords: Defect Prediction, Retrospection, Orthogonal Defect
Classification, Root Cause Analysis

1. INTRODUCTION

A defect can be determined in software as error, failure, fault,
flaw, bug or mistake in a computer program that may deviate
or prevent the software from behaving as intended. A defect
represents the undesirable aspects of software quality. A
complete verification and validation of software is done to
ensure that it is fulfilling all the requirements correctly. As
exhaustive testing is not possible, the software engineer does
several kinds of testing to identify the defects and rectify
them before the customer/end-users encounter the defects. It
could be an expensive and time consuming process. But we
need to find the defects and rectify those defects so that they
do not lead to failures after the release of software. Various
techniques are already present to do effective verification and
validation. But, this research paper presents that this defect
prediction technique performs noticeably better in terms of
catching the defects in the software at early stages. A defect
amplification model can be used to illustrate the generation
and detection of defects during the preliminary design, details
design and coding stages of software engineering process.
During these Phases, defects may be adversely generated,
reviews may fail to uncover the newly generated defects and
defects from previous phases slide to the next phases, this

result in increase of defects. Identifying the errors and
avoiding the defects at early stages will result in investing
less cost and effort when compare to identifying and
removing defects at a later stage. This is explained neatly
using Fig 1

Fig 1 Graph represents Time and Cost required to remove defects

Defect predictors guide the developer through fault prone
parts of the software so that the managers can allocate the
resources effectively to conduct the testing. Effective use of
testing resources at early stage of the process will result in
product quality as well as time to market. The most important
goal of the defect predictor is to accurately predict the
modules where faults are likely to hide in software
development life cycle. Accurate predictors could help in
reducing time and cost of testing the software.

1.1 Techniques for identifying and analyzing the Defects
Over the years, various types of techniques have been
developed to ensure the quality of software such as.

 Defect Detection Technique
 Defect Analysis Technique
 Defect Prediction Technique

Defect Detection Technique
Variety of testing techniques can be used to identify software
defects in software development process for all domains,
functional and non-functional requirements (such as
boundary testing, component testing, scalability,

Pranayanath Reddy Anantula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2242 - 2245

2242

interoperability, stress testing, code inspection, alpha testing,
beta testing).Defect detection technique such as these are
used in most of the software development projects to discover
the defects, document those defects for improving quality of
the product,. The defect document information will be an
input for defect analysis technique. Defect density in the
software can be identified using
Defect Density (DD) = Sum of the defects found during all
the test cycle / KSLOC
Note: The defect density is not always proportional to the size
and complexity.

Defect Analysis Technique
Analyzing the defect leads to identifying the root cause of the
defect and to find the solution to overcome the defect in
further development process. This analysis will be useful to
improve the quality of the software and even the productivity
of the developer.
Some of the defect analysis techniques are

 Defect Classification using Defect taxonomies
 Root Cause Analysis
 Fish Bone Analysis

Defect Prediction Technique
The goal of defect prediction technique is to anticipate and
prevent defects proactively before they can occur and cause
failures. This can be done by experience of the predictor in
the same project or in the relevant kind of projects. By using
the experience gained from the earlier projects software
engineers can identify the common causes for defects in work
products and change the process to eliminate those causes to
be occurred. The resulting form of successful application of
defect prediction technique can be reapplied elsewhere in the
project life cycle.
Some of the defect prediction models are:

COQUALMO
Constructive quality model predicts the defect density of the
software under development where defects conceptually flow
into the defect removal pipes so that the defect does not flow
from one phase to another phase and become a big defect that
may lead to project chaos.

Mining Test Defects using ODC
Defect analysis technique like Root Cause Analysis,
Statistical Growth Modeling (e.g. s-curves) [3] and Fish Bone
Technique play a useful role in analyzing the software defects
and in mining the defects.
 ODC was invented by IBM research to establish a
Foundation for providing analysis and feedback of defect data
targeting quality issues in software design and code in a
procedural language environment.
Why defect prediction is important?

1) Avoiding defects at an early stage eliminates wastage in
process and development of product
Defects are the leading contributors to IT waste and cause
significant project rework, delay and cost over runs. In the

current trend the projects are speeding to meet time to market
in this process. Majority of defects are not identified until the
testing phase of a project. In many cases defects are escaped
into production that lead to more rework and also it increases
cost for rework. And when analyzed they found that most of
the defects originated in the requirement phase of the project.
If these defects are identified, less rework will be done at
later stage of the software development process. The errors at
requirement phase occur due to poorly defining the
requirements and due to ambiguous requirements.

2) Cost Efficiency
Most of the software product seems to contain a lot of bugs,
particularly in early release because engineering team’s are
often forced to work towards the release deadlines that are
not reasonably set. To meet the deadlines, team members cut
corner, skip steps or fail to look hard for mistakes and release
the product with known bugs. Once the product has been
released errors continue to add cost to the product. The
number of defects identified by the customer is
communicated to the product support team. More errors are
found more rework is required and it leads to customer
dissatisfaction. The more complex the problems, the more
expensive the support personals required. The errors found by
the customer have an added effect on the revenue in addition
to the increased cost. Customer will likely not volunteer to
give references or aid more sales and customer will be likely
to replace the buggy product sooner than later. One obvious
solution is to never set unreasonable release dates, establish
effective engineering process and eliminate errors as early as
possible in software development life cycle.
With the current intent in the process improvement many
organizations have positioned themselves to begin to improve
their testing practices. This is evident in many of the
organizational budgets for continuing process improvement,
acquiring testing tools and trainings their resources.

2. RELATED WORK

ODC is a measurable system for software process based on
semantic information contained in the defect stream. It brings
a new level of sophistication for analysis and leverage
information captured in the development process. ODC
technology works by leveraging information contained in
software bugs-something quite freely and often abundantly
available in any software development process. However, the
entry point of ODC is not rigidly tied to organizational
maturity. ODC helps in achieving and maintaining high
maturity with less expense and greater control [6].
ODC is a scheme to capture the semantics of each software
defect quickly. It is the definition and capture of defects
attribute that make mathematical analysis and modeling
possible. Analysis of ODC data provides a valuable
diagnostics and classification method for evaluating the
various phases of the software life cycle and the maturity of
the product [7].
The following case study uses ODC classification mechanism
to analyze the efficiency of the software testing process.

Pranayanath Reddy Anantula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2242 - 2245

2243

Classifying the process based on the kind of defect that
triggered. Triggers are a key to give an understanding of what
happened during a test cycle and its efficiency. Additional
data such as ODC defect types and ODC source would be
useful to further narrow down to the specific development
practice problems. ODC trigger can be easily generated from
the defect tracking logs. These logs are created while
analyzing the defects.
A defect analysis conducts a postmortem, also called as
retrospection to identify the root cause of the defect.
Retrospective analysis generates trigger that tends to be easy
to extract from test defect logs. The Classification is done
based on Context, User Interface, Components, Navigation,
Configuration, Security, Performance and Process. Each
classification in turn triggers some activities for testing.

2.1 Applying ODC to In-Visualizer Web Application.
 The project is large sized, contains of more than 1000KLOC.
The project employs the incremental process model. In ODC
activity, the tester will be inputting the data and developers
will be responsible for the end actions.
Steps involved in adopting ODC in test cycle are
Step1: Initially defect data is collected from all possible
phases of testing.
Step2: Analysis is needed on each defect data for better
understanding.
Step3: Adding ODC attribute names for activities, triggers
and impact of defect on data
Step4: classify ODC scheme differentiates and then group
defect data which are independent or no redundant.
Step5: Deriving information from the classified defects by
applying domain experience based.
These steps lead as a road map for improving and doing the
testing.

Fig 2 Steps to implement ODC

The history of the defect data will be collected from the
defect tracking tools and ODC tags will be inserted. ODC
tags will be used in the subsequent data input steps.
Before starting with the test execution cycle in ODC, ODC
team should customize the tags in accordance with the In-
Visualizer web application. Table 1 shows the customized
ODC tags.

Activities Triggers Impact

Requirement
Review and
Inspection

Completeness
Flow
Consistency
Sequencing
Coverage
Behavior
Conform
Clarity

Correctness Concerns
Completeness
Concerns
Usability Concerns

Design & Code
Review

Design Flow
Backward-
Compatibility
Concurrency
Interaction
Package
Sequencing
Variation

Correctness Concerns
Reliability Concerns
Data Integrity
Concerns
Consistency Concerns

Integration Testing

Flow
Interaction
Navigation
Link
Complex

Correctness Concerns
Reliability Concerns
Data integrity
Concerns
Recoverability
Concerns

System Testing

Navigation
Behavior
Accuracy
Workload
Recover
Restart
Interaction
Backward-
Compatibility

Security Concerns
Performance Concerns
Correctness Concerns
Reliability concerns
Recoverability
Concerns

Usability Testing

Behavior
Aesthetics
Style
Input
Language

Usability Concerns
Correctness Concerns

Table 1 ODC Tags for In-Visualizer Web application

3. RESULTS AND ANALYSIS

Several test strategies are iterated at regular intervals. During
every interval, the testers feed the ODC tags into the defect
tracking management tool. Various defects distribution charts
are prepared based on the defect tracking tools and ODC tags.
The charts are prepared by using defect distribution data after
several test execution cycles. Through the defect tracking tool
the authors queried the defects data across all the test cycles,
without including the ODC tags and make the charts Fig 3.
Defect distribution indicates percentage of defects found
during each phase of SDLC. Having looked at the defect
distribution chart, it is easy to know the phases where defect
distribution is high.
Now to improve the quality they have paid more attention in
removing the defects in requirements and design. The
evaluation of defect areas can also be done based on severity
of defects Fig 4. Charts can be used to get a look at the
number of defects by category, such as priority or severity.

Pranayanath Reddy Anantula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2242 - 2245

2244

Fig 3. Defects Distribution across various Testing types and its severity

Fig 4. Defect Density across various ODC activites and severity

The inference made or lesson learnt even after the exhaustive
analysis on the defect data is inadequate to derive information
to disseminate among all members.
This situation induces to choose and change the objective of
mining the defect data to add more sense. Hence they queried
the defects data across all the test cycles and generated the
charts including the ODC tags.
The authors in this paper have taken 3 major web components
of In-Visualizer web application which contributes to major
area of defects. Fig 5 depicts the following points.

1) Most of the defects are uncovered during ODC activity-

System Testing
2) System testing activity shares the major part in web forms

component out of all 3 chosen components.

Fig 5. Defect Distribution across Modules

Combination of these inferences and pareto principle help the
management to reduce the major portion of the defects by
acting on the right areas

4. CONCLUSION
Software defect prediction work focuses on the number of
defects remaining in a software system. This paper provides a
detail report of a software process model which will help in
predicting the defects by classification and evaluation. It also
provides a detail description of how the software process
model aligns itself to business goals and achieves good
quality software by predicting the number and type of defects
well in advance and take necessary action to reduce the
occurrence of defects. ODC results help to predict the
software defects and assist project managers in allocating
testing resources effectively to improve the quality of the
software.

 REFERENCES
[1]. Butcher (2002), “Improving software testing via ODC: Three Case

Studies”, M.Butcher, H. Munro, T.Kratschmer, IBM Systems Journal,
Vol.41, No.1

[2]. Brad (2001),” How good is the software: A Review of Defect prediction
Techniques”, Brad Clark, Dave Zubrow, Carrnegie Mellon University

[3] Mullen (2002) “Orthogonal Defect Classification at CISCO”, T.Mullen,
D.Hsiao, Proceedings ASM conference.

[4] Ram, “Orthogonal Defect Classification”. www.Chillaregte.com/odc
[5] Ram (1992), “Adapting ODC to improve software quality: A case Study”,

Yang Gu, Software Engineer, IBM http://www.ibm.com
[6] Yang (1992), “Orthogonal Defect Classification A Concept for In-

Process Measurements”, Ram Chillarege, IEEE Transactions on
software Engineering, Vol 18, No.11, November.

[7] Paulk (1993), “Capability Maturity Model for Software”, Version 1.1,
Mark C.Paulk, Bill Curtis, Mary Beth Chrissis, Charles V.Weber,
Software Engineering Institute.

[8] Chillarege (2002) ,”Test and development process retrospective 0a case
study using ODC triggers” , Chillarege, R.; Ram Prasad, K.'

Pranayanath Reddy Anantula et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 2 (5) , 2011, 2242 - 2245

2245

